Intro to Robotics and Programming HSTCH 230

UNIT NAME	LESSONS	LEARNING TARGETS/ OBJECTIVES	Resources (Suggested Activities)	ASSESSMENT	CROSS CURRICULUM CONNECTIONS
Introduction: Free Building	Unit Plan	The following VEX STEM Lab helps to provide students with a fun and relevant way to investigate the kit of VEX V5. Students will complete a variety of different tasks to explore their creativity, learn the parts of their kit and engineer different robot designs.	Scavenger Hunt Lesson Get in Shape Lesson How Big Are Your Teeth Lesson Hang Out Lesson	Unit assessment will be done through the results competition, debrief conversation and engineering notebook Debrief Conversation Rubric Engineering Notebook Rubric Other Grading Rubics	Engineering <mark>Math</mark> Science
Mechanical Advantage	Unit Plan	Students will build the Gearbox and also explore mechanical advantage of gear ratios.	Mechanical Advantage Teacher Outline	Unit assessment will be done through the results competition, debrief	Engineering Math Science

			Gearbox Build Instructions Torque or Speed	conversation and engineering notebook <u>Debrief</u> Conversation Rubric <u>Engineering</u> Notebook Rubric <u>Other Grading</u> Rubics	
Robo Rally	Unit Plan	For this VEX Stem Lab, students are asked to use proportional reasoning and scale to design a racecourse for the Speedbot. Students will begin by creating a racecourse by planning with scaled drawings. Then, analyze relationships between scaled measurements. Students will finish the unit by practicing converting units and proportional reasoning.	Robo Rally Teacher Outline Robo Rally Pacing Guide Robo Rally Build Instructions Converting Units Lesson Robo Rally Challenge	Unit assessment will be done through the results competition, debrief conversation and engineering notebook Debrief Conversation Rubric Engineering Notebook Rubric Other Grading Rubics	Engineering Math Science
Robo Soccer	Unit Plan	The following VEX STEM Lab will introduce students to the iterative	Speedbot Build Instructions	Unit assessment will be done through	Engineering Math

		process by having them design and		the results	Science
		test attachments to their robots for	Student Centered	competition, debrief	Engineering Design
		the purpose of playing the game of	<u>Model</u>	conversation and	
		Robosoccer. After contextualizing		engineering	
		robot sports as opportunities for	Cooperative	notebook	
		broadening applications of robot	Learning Model		
		technologies, students are asked to		Build Rubric	
		remotely control their robots to	Teacher Direct		
		dribble a soccer ball around cones	<u>Instruction</u>	Engineering	
		and design an attachment to more		Notebook Individual	
		effectively do so. Students document	Student Centered	Reflection Rubric	
		their design process and receive	<u>Lesson</u>		
		constructive feedback from peers to		Collaboration Rubric	
		model more professional	RoboSoccer Rules		
		collaborations. They then build, test,			
		and further refine their attachments			
		for later use during the challenge of			
		playing a Robosoccer game			
		The following VEX STEM Lab	Medbot Unit	Unit assessment will	
		provides an engaging way to	Pacing Guide	be done through	
		introduce students to behavior-	r acing duide	the results	
		based programming. Students	Speedbot Build	competition, debrief	
	Unit Plan	analyze commands to recognize that	Instructions	conversation and	Engineering
		everything in a project must be	<u>IIISTI UCTIONS</u>	engineering	Math
Medbot		broken down into tiny behaviors that	Behavior Based	notebook	Science
Medbot		a robot can understand and perform			Coding
		directly. Through a series of	Programming	<u>Debrief</u>	Coung
		exercises, students will learn how to	Block Programming	Conversation Rubric	
		program a robot to drive forward or	Forward and		
		in reverse, turn right or left, and	Reverse	<u>Engineering</u>	
		wait. In the Automed Challenge,	<u>IVE A EL 2 E</u>	Notebook Rubric	
		students will create a project that			

		will make deliveries on a "hospital	Block Programming	Other Grading	
		floor."	Left and Right	Rubics	
		noon.	Prepare for Automated Challenge Design and Develop Your Project	Nubics	
			<u>Automated</u> Challenge		
Momentum Alley	Unit Plan	The following VEX STEM Lab helps to provide students with a fun and relevant way of learning about momentum and energy transfer. In Momentum Alley, students will demonstrate an understanding of programming their robot forward and in reverse in the Play section of the lab. They will then use their programming skills and their introduction to momentum and energy transfer to work as a team to design a project that will earn them as many points as possible in a roll. It's a traditional game of bowling with a robotic twist!	Momentum Alley Unit Pacing Guide Speedbot Build Instructions Block Programming Forward and Reverse Exploring Velocity	Unit assessment will be done through the results competition, debrief conversation and engineering notebook Debrief Conversation Rubric Engineering Notebook Rubric Other Grading Rubics	Engineering Math Science
It's a Draw	Umit Plan	The following VEX STEM Lab helps to provide that bridge between subjects. In "It's a Draw", students	Unit Plan Link Unit Preview	Unit assessment will be done through the results	Engineering Math Science

		will investigate how technology		competition, debrief	<mark>Art</mark>
		impacts the field of art and explore	Teacher Notes	conversation and	7.11.5
		how robotics can be used as a tool in	<u>Guide</u>	engineering	
		new ways of thinking, seeing, and	<u>Galac</u>	notebook	
		creating.	STEM Lab Guide	Debrief	
		ci cating.	31 EIVI Lab Galac	Conversation Rubric	
			<u>Clawbot Build</u>	<u>conversation rabble</u>	
			Instructions	Engineering	
			<u>IIISti detions</u>	Notebook Rubric	
			Drawing with Your	Notebook Nubite	
			Robot	Other Grading	
			NODOL	Rubics	
			Preparing for It's a	<u>Nables</u>	
			Draw Challenge		
			braw chancinge		
			<u>It's a Draw</u>		
			<u>Challenge</u>		
			<u></u>		
			Unit Review and		
			Know Questions		
		The following VEX STEM Lab	Unit Pacing Guide		
		provides an engaging way to			
		introduce students to behavior-	Unit Preview		
		based programming. Students			Engineering
Speedy	Unit Plan	analyze programming to recognize	STEM Lab Guide		Math
Delivery		that every solution must be broken		Same as above	Science
,		down into tiny behaviors that a	Clawbot Build		Coding
		robot can understand and perform	Instructions		
		directly. Through a series of			
		exercises, students will review how	Programming Info		

		to program a robot to drive forward or in reverse and turn right or left. They will be introduced to programming the Claw attachment and utilize their knowledge to complete the "Package Dash Challenge." In the "Package Dash Challenge," students will create a project that will direct the robot to pick up packages and bring them to a shipping area as fast as possible.	Behavior Based Programming Programming the Robot Arm Programming the Claw Range of Motion Package Dash Challenge		
Loop, There It Is	Unit Plan	The following VEX STEM Lab will introduce your child to loops and ask them to complete several mini challenges to experiment with using loops within their projects. This information will be used later in the "Groove Machine Challenge," where students will program robot movements to repeat, causing their robot to "dance."	Unit Pacing Guide Clawbot Build Instructions Programming Loops Block Based Programming Controllers and Loops Groove Machine Challenge	Unit assessment will be done through the results competition, debrief conversation and engineering notebook Debrief Conversation Rubric Engineering Notebook Rubric Other Grading Rubics	Engineering Math Science Coding

To Do, Or Not To Do	Unit Plan	The following VEX STEM Lab will build upon previously learned programming concepts by introducing your child to conditional statements and how sensors can serve as the input deciding if the conditional is true. They will also explore how a conditional statement can be looped, repeating a decision or executing a behavior.	Clawbot Build Instructions Exploration Programming with Conditionals Programming Decision Making Adding to the Brains Screen The Controller as a User Interface Challenge	Unit assessment will be done through the results competition, debrief conversation and engineering notebook Debrief Conversation Rubric Engineering Notebook Rubric Other Grading Rubics	Engineering Math Science Coding
------------------------	-----------	--	--	---	--